Comparative mapping of the Brassica S locus region and its homeolog in Arabidopsis. Implications for the evolution of mating systems in the Brassicaceae.

نویسندگان

  • J A Conner
  • P Conner
  • M E Nasrallah
  • J B Nasrallah
چکیده

The crucifer family includes self-incompatible genera, such as Brassica, and self-fertile genera, such as Arabidopsis. To gain insight into mechanisms underlying the evolution of mating systems in this family, we used a selective comparative mapping approach between Brassica campestris plants homozygous for the S8 haplotype and Arabidopsis. Starting with markers flanking the self-incompatibility genes in Brassica, we identified the homeologous region in Arabidopsis as a previously uncharacterized segment of chromosome 1 in the immediate vicinity of the ethylene response gene ETR1. A total of 26 genomic and 21 cDNA markers derived from Arabidopsis yeast artificial and bacterial artificial chromosome clones were used to analyze this region in the two genomes. Approximately half of the cDNAs isolated from the region represent novel expressed sequence tags that do not match entries in the DNA and protein databases. The physical maps that we derived by using these markers as well as markers isolated from bacteriophage clones spanning the S8 haplotype revealed a high degree of synteny at the submegabase scale between the two homeologous regions. However, no sequences similar to the Brassica S locus genes that are known to be required for the self-incompatibility response were detected within this interval or other regions of the Arabidopsis genome. This observation is consistent with deletion of self-recognition genes as a mechanism for the evolution of autogamy in the Arabidopsis lineage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana.

As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximate...

متن کامل

The evolution and diversification of S-locus haplotypes in the Brassicaceae family.

Self-incompatibility (SI) in the Brassicaceae plant family is controlled by the SRK and SCR genes situated at the S locus. A large number of S haplotypes have been identified, mainly in cultivated species of the Brassica and Raphanus genera, but recently also in wild Arabidopsis species. Here, we used DNA sequences from the SRK and SCR genes of the wild Brassica species Brassica cretica, togeth...

متن کامل

Comparative Analysis of FLC Homologues in Brassicaceae Provides Insight into Their Role in the Evolution of Oilseed Rape

We identified nine FLOWERING LOCUS C homologues (BnFLC) in Brassica napus and found that the coding sequences of all BnFLCs were relatively conserved but the intronic and promoter regions were more divergent. The BnFLC homologues were mapped to six of 19 chromosomes. All of the BnFLC homologues were located in the collinear region of FLC in the Arabidopsis genome except BnFLC.A3b and BnFLC.C3b,...

متن کامل

Comparative genomics of Brassicaceae crops

The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utili...

متن کامل

Evolution of genome size in Brassicaceae.

BACKGROUND AND AIMS Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 1998